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INTRODUCTION

The new theory of physical wavelets makes it possible to perform radar and sonar
analysis directly in the space-time domain, based on fundamental principles underlying
the emission, reflection, and reception of electromagnetic and acoustic waves!?, Being
independent of the Fourier transform and even of the usual (affine) wavelet transform,
this formalism is therefore equally well suited for ultrawideband or short-pulse radar as
for narrowband or continuous-wave radar. However, Fourier analysis does have a natural
place in this theory and can be used easily when spectral questions are of interest.

A transmitting antenna following an arbitrary (possibly accelerating or nonlinear)
space-time trajectory a(t) emits a physical (acoustic or electromagnetic) wavelet which is
propagated in space by the appropriate Green function. This defines an emission operator
E,, which, acting on any time signal ¥(t), gives the emitted space-time wave (E,9)(r,t).
The reception operator R, is dval to E, , measuring any incident space-time wave F(r,t)
along the given antenna trajeciory a(t) to produce the received time signal (RoF)(t).
Reflection is modeled as reception followed by re-emission, i.e., by the operator E, R,
transforming any incident space-time wave to the reflected space-time wave. Let the re-
ceiving antenna follow another arbitrary space-time trajectory (t) (possibly different from
the trajectory a(t) of the transmitter), let the target follow a third arbitrary space-time
trajectory B-(t), and let the transmitted and received signals be 9(t) and x(t), respectively.
The objective is to estimate the target trajectory Gr(t) from a knowledge of a(t),v(t), ¥(t)
and x(t). This is achieved by maximizing the modulus of the the normalized ambiguity
functional ¥ y(8), obtained by matching the actual return x(t) with the computed return
due to a trial trajectory ((t). When the radar is monostatic and the target is assumed to
move uniformly in the radial direction, then X, (3) reduces to the usual wideband ambi-
guity function, which is just the ordinary time-scale (wavelet) transform of x(t) with (t)
as the basic wavelet. In the narrowband approximation, it reduces further to the usual
time-frequency ambiguity function, which is a windowed Fourier transform of the video
signal of the return. This shows that our “physical wavelet analysis” is a generalization
of the usual (“mathematical”) wavelet analysis, which is in turn a generalization of time-
frequency analysis. In particular, our analysis applies equally well to bistatic wideband
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radar, where the Doppler effect can no longer be represented simply by scaling and hence
the usual affine wavelet analysis breaks down.

In Reference 2, the transmitting and receiving antennas and the target were all as-
sumed to be points, so that the trajectories a(t), 8(t), and ~(t) fully describe their motions.
Consequenctly, the emitted and reflected waves are omnidirectional and hence are not very
useful in practice. In this paper we generalize the above model to include extended an-
tennas and targets, follwing an idea introduced by Heyman and Felsen3. The associated
radar beams are much more useful since they have a measure of directivity.

EXTENDED PHYSICAL WAVELETS AND
AMBIGUITY FUNCTIONALS

Suppose we are given an antenna located at the space point x, emitting the response
to an impulse at time ¢. Ignoring polarization for simplicity, the resulting wave at the
observation point x’ at time ¢’ can be represented by a solution of the scalar wave equation,
which we write as

K\ t'|x,t),

with a source distribution appropriate to the antenna. If the antenna is very small (essen-
tially a point) and omnidirectional, then K (x',t'|x,t) is well approximated by the retarded

Green function
§(t' —t — |x’ —x|/c)
G(x' —x,t' —t)=
(x x? ) 47r|x, _ xl ] s

where ¢ is the speed of light. Following Heyman and Felsen®, a simple model can be
formulated for an extended antenna by allowing complex antenna space-time coordinates
X — z = x + iy and t — u = t + is and taking K(x',t'|z,u) to be an analytic extension
of the above retarded Green function.* Heyman and Felsen showed that for |y| < cs,
K(x',t'|z,u).can be interpreted as a pulsed beam field emitted by a circular disk of
radius |y| in the direction of y. Thus y is a convenient “handle” by which the radius and
orientation of the antenna can be controlled, without having to construct a messy model
for the antenna involving a continuous distribution of point sources. More complicated
extended antennas and arrays can be modeled by a distribution (continuous or discrete)
of such complex source points.

To keep the notation uncluttered, we combine the space and time coordinates into a
single symbol:

' = (x',t') € RY, z=(z,u) =z +1iy € C*,

where
T= (X’, t) and Y= (Ya S)'

* Note that our convention differs from that of Reference 3 in that our positive-
frequency time-harmonic waves vary as et rather than e~ **. For this reason, the analytic
continuation of the retarded Green function (using the analytic signal of the delta func-
tion) is to the upper-half time plane (s > 0) rather than the lower-half time plane. This is
consistent with the convention used in Reference 1.
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The condition |y| < ¢s means that the imaginary space-time four-vector y belongs to the
future cone, so that z actually belongs to the complex future tube®*

ze€T, ={z+iyeC*:z € R*and y = (y,s) with |y| <es},

which is a four-dimensional generalization of the upper-half complex time plane.

Suppose now that our antenna executes an arbitrary motion, including possible rota-
tions and accelerations. Using the complex source coordinates, this can be parameterized
as

z = a(t) = z(t) + iy(t), where z(t) = (x(t),t) € R* and y(t) = (y(t), s). (1)

It is reasonable (but mathematically unnecessary) to assume that the radius of the antenna
remains constant during the motion, so that |y(¢t)] = |y(0)] = R < cs, although the
direction of y(t) may vary to allow tracking, scanning, etc. While executing this motion,
the antenna is fed an input time signal ¢(¢). Then the output beam is

U (z') = / gt K| a() v(t).

— 00

For reasons explained in Reference 2, we call ¥,(z’) the extended physical wavelet gener-
ated by v¥(t) along the antenna motion a(t). Given «(t), we define the emission operator
E, as the operator transforming the time signal 1(t) to the space-time wave ¥,(z’), i.e.,

(e o]

(Bat)(@') = / dt K(z'| o(t)) (). @)

— 00

Thus E, takes a function of one variable (the input signal) to a function of four variables
(the output beam). On the other hand, if the antenna is used as a receiver, it converts
space-time waves into time signals. Again, assume that the complex antenna motion o(t)
is given as in (1). Then the simplest model for the received signal due to an incident wave

F(z') is
(RaF)(t) = ga F(a(t)), 3)

where g, is a “gair factor.” Thus R, simply measures the field along the complex tra-
jectory a(t). More complicated receivers can be formulated which measure derivatives of
F along a(t). (In the full electromagnetic formalism, for example, R, could measure the
induced current rather than the field.) Since «(t) is complex, the “evaluation” of the field
F(z') at ' = a(t) must be defined in (3). For this we use the analytic-signal transform of
F, which extends F to complex space-time!::

Favi =L |7 pem)

T ) T— 1

When y = (0, s) with s > 0, F(z+1y) reduces to the usual Gabor analytic signal F(x, t+1is)
corresponding to F'(x, t), with x regarded as an external parameter; this function is analytic
in the upper-half complex time plane. It is further shown in Reference 1 that if F(z') is any
solution of the homogeneous wave equation (or Klein-Gordon equation*), then F(z + iy)
is analytic in the future tube 7, (i.e., |y| < c¢s). The reception operator then evaluates the
analytic-signal transform F(z + iy) in its region of analyticity.
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With emission and reception modeled by (2) and (3), we are almost ready to formulate
a general radar problem. The only missing element is a model for reflection. In the spirit
of regarding a scattered electromagnetic wave as being emitted by the current induced
on the scatterer by the incident wave, we propose the following model: Suppose we are
given an orfented circular “target” disk executing a motion described by a complex space-
time trajectory a(t) = z(t) + 1y(t) as in'(1). Again, we interpret the imaginary position
vector y(t) as defining the radius and orientation of the disk. (To say that the disk is
“oriented” means that its two sides are not equivalent; for example, one side could be
reflective while the other side is not. Then every unit vector § = y/|y| corresponds to a
unique orientation of the disk. This is useful if, for example, we approximate a complicated
target by patching together disks of various sizes and orientations, as in Section 10.2 of
Reference 1; their non-reflecting sides should then be oriented towards the interior.) A
given space-time wave F(z') will now be assumed to be reflected from the disk as follows:
First the disk acts as a receiver, then as a transmitter. Thus the reflected wave is

oo
Fual@) = (BaRuF)(&) = g | dt K(@'|2(8) Fla(t)
-
Note that in the present context, the original “gain factor” g, is re-interpreted as a re-
fection coefficient. When a complicated target is patched together from circular targets
of various radii and orientations, the reflection coefficient becomes a function defined over

the target surface as desired.

The ambiguity functional formalism developed in Reference 2 generalizes easily and
naturally to the present setting of extended physical wavelets. Given the outgoing time
signal 9 and the motions o, 3, and ¥ of the transmitter, target, and receiver (all complex),
our model for the time signal received at =y is

¥a(t") = (RyEgRpEat)(t")
= 695 / at' dt K(v(¢") | BE)) K(BE) | at)) $(2).

Of course, the received signal depends functionally on all three trajectories a, 3,7, as is
evident from the right-hand side of (4). But to simplify the notation, we have suppressed
the dependence on the known trajectories o and ~v and displayed only the dependence on
the target trajectory 8. To estimate the actual target trajectory Br(t), we compute p(t)
for a trial trajectory B(t) and match the result with the actual return x(t) by taking the
inner product of the two time signals. We denote the result by %x(8), which we call the
ambiguity functional of the return:

7(0) = Covp) = [ de" x(E) ()
_ / / a” dt' dt x(¢") K (v(t") | B{t)) K (B(E) | a(t)) $(t).

(We assume that 1(t) and x(t) are real; if they are complex, then x(t) should be replaced
by its complex conjugate in (5).) Assuming that ¥p(t) and x(t) have finite energies llvsll?
and ||x||?, the Schwarz inequality implies that

X8| = (x| < lIxIl 16l
X(B)] = lIxI lbsll <= x(2) = Cvp(2)-

4
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(5)

(6)




Therefore, to estimate the true target trajectory Br(t), we need to maximize the normalized
ambiguity functional

_ oy = X(B)

X~ (B )

e

By (6),
IXv(B)| < lixll and |x~(B)] = lIx]l = x(t) = Cyp(t).

Equivalently, we can minimize the error functional defined by

Ix(8)]

£ = 1= el

since the Schwarz inequality states that
0<EPB) <1 and E£(B) =0 = x(t) = Cea(t).

Thus |x~(8)] and £(B) attain their maximum and minimum values, respectively, only
when the trial return is indistinguishable from the actual return. Of course, this does not
guarantee that the trial trajectory ((t) coincides with the actual target trajectory Gr(t),
since the return does not, in general, uniquely determine the target trajectory. That is, the
functionals x n(8) and E(B) are generally not one-to-one. The class of all trajectories 3 such
that ¥~ (8) = x~(Br) or, equivalently, £(8) = £(Br), represents the inherent ambiguity
of the radar problem. A problem of obvious importance is to find outgoing signals ¥(t)
which minimize this ambiguity class.

We have assumed above that the return is due to a reflection from a single target. If
N distinct targets are involved, then we can approximate the return as a superposition

wﬁhﬂz,---,ﬂN ~ wﬁl + w.@N . (7)

As noted, (7)is an approximation because it ignores multiple reflections. Although these
can often be ignored, they can also cause resonances (ringing), hence must sometimes be
taken into account. This can be easily done, in principle. For example, the signal received
by the doubly-reflecting path o — B, — B, — v is

V8 = By Ep, Rp, Ep, Rp, Ea¥,

which can be immediately converted to a triple integral by using the definitions (2) and
(3). Sums of contributions from various “trial” scattering paths may then be matched with
the actual return, defining a generalized ambiguity functional

)2(/31:/82)' .- 1ﬁN) = <X’¢ﬂ1,[32,.--,ﬂ~ >7

and the Schwarz inequality may be used as in the case of a single path to optimize the
match.

This method is reminiscent of Feynman diagrams®, where fundamental processes are
represented by multiple integrals with corresponding intuitive diagrams. Because the
physics is built into the formalism from the beginning through the Green functions, our
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model can handle such complications in a conceptually straightforward (if computation-
ally nontrivial) way. The resemblance to Feynman diagrams is no coincidence, and the
present formalism may be modified to include quantum (photonic) aspects of radar simply
by using Feynman propagators in place of the retarded Green functions.
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PLAN: Four 90-minute lectures

1. Generalized Radar Analysis with Point Wavelets
2. Reduction to Time-Scale Analysis

3. Reduction to Time-Frequency Analysis

4. Directivity: Radar with Pulsed-Beam Wavelets

No previous knowledge of wavelet analysis or time-
frequency analysis will be assumed. Both will be seen
to emerge naturally from generalized radar analysis!

COURSE SUMMARY

Problem: Estimate arbitrary target motions given
arbitrary, independent motions of transmitting and
receiving antennas. Method: Match measured re-
turn with trial return based on trial target motions.
This gives the ambiguity functional, maximized when
the two returns coincide. For monostatic radar with
uniform target motion, it reduces to the wideband
ambiguity function (time-scale transform) of the re-
turn. For narrowband signals, it further reduces to
the usual time-frequency transform. To obtain direc-
tivity, use pulsed beams. Time-~frequency anal-
ysis is an approximation to wavelet analy-
sis, which is an approximation to “physical”
wavelet analysis.

1721707 0—2

LECTURE 1
Physical Wavelets and Ambiguity Functionals

1. Emission, Reception and Reflection

For simplicity, we ignore polarization. Since our mo-
tivation is radar and remote sensing, we use the lan-
guage of “antennas” even though we are really doing
acoustics here. The concepts easily extend to EM.

Space-time notation: (x,t) =z € R*

Time-dependent source distribution: J(x,t) = J(x)

The resulting space-time wave F(z) = F(x,t) satis-
fies the wave equation

(6% — VX) Fz) = J(z)

in free space. The causal solution is given by

F(z) = Gz — z')J(z') d*z’,

R4

where G is the retarded Green function

G(z) = G(x,t) = 6(t = xl/e) ‘

4mix|
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Now consider a point source moving along an arbi-
trary trajectory
x =r(7).

For simplicity denote the corresponding trajectory in
space-time by a:

a(r) = (r(r),7) € R".
While moving, the source emits a time signal ¥(7).

This moving point transmitter is described by a
source function concentrated on a(7). namely

J(m):/ dr W (z — a(r))u(r).

The emitted wave is then

U,(z) = dr G(z — a(7))u(7)
= dr G(x —r(r).t — 7))
,,,,,,, 1-2




For example, if r(t) = 0, then ¥,(z) is the spherical
wave :

_wlt—lxlfe) _wlt=r/o) _ g

U, (x,t) rt),

47|x| drr

as shown below.

A physical wavelet ¥(r,t) with stationary source

' 1-3

Ifr(r) = ro+vr, then ¥, (z) is a translated (delayed) .
and Doppler scaled version of ¢ [1]. However, the

amount of scaling depends on the direction of the

observer relative to the velocity v of the source, as is

intuitively and geometrically clear.

Translations and scalings are the “raw material” of
wavelets, hence for general a(7) we call ¥,(z) the
acoustic wavelet generated by ¥(7) along a(7) [1-
3].

EM wavelets are defined similarly as waves generated
by moving elementary currents.

Here “elementary” means point sources, but this can
be generalized to extended sources [4].

Given a trajectory «, define the emission operator

by (an)(x) = \I’a(ﬂi), ie.,

(Fa)a) = [ T Gz - o). |

E, converts any given time signal 1(7) to the emitted
space-time wave ¥, (z) (one to four variables).

- 1-4

Reception works the other way: A receiver moving
along a(7) converts a space-time wave F(z) into a
time signal by measuring the wave along (7). This
defines the reception operator

(RaF)(r) = gaF(a(r)) | (2)

where g, is a gain factor. Thus R, converts functions
of four variables to functions of one variable.

More general reception operators are possible. For
example, in EM, we can measure the induced current,
which involves derivatives of the field. The above
model is the simplest.

Now consider a point target moving along an arbi-
trary trajectory B(7) through a wave F(z).

We model the reflected wave Freq(xz) by assuming
that the target acts first as a receiver, then as a trans-

15

mitter:
Frea(z) = (EgRgF)(z)

=g [ dr Glo - BO)F(B() )

This is similar to the EM case, where the incident
wave induces a current on the target, which in turn
radiates the scattered wave.

Problem: Given a transmitter following an
arbitrary trajectory a(7) and a receiver fol-
lowing an arbitrary trajectory (7). Given the
transmitted signal ¢(7) and the received sig-
nal x(7). Assuming there is a single target,
estimate its trajectory Br(7).

2. The Ambiguity Functional

Let B(7) be a trial target trajectory. Then emission
of ¢ from a, reflection from 3, and reception at 7y are
given by

Y — Eqp — EgRgEq — RyEgRgEsv.

1-6




Hence the trial return at v is

Ys = RyEgRgEqv,

where only the dependence on the trial trajectory 3
has been made explicit. Of course, ¥z also depends
implicitly on the known trajectories o and 7.

Inserting the definitions (1) and (2) gives

vs(r) = 9y99 [ [ dr' ' Glo(r) = B()
x G(B(r') — a(r")) H(r").

This is the computed trial return assuming a trial
trajectory S.

E,é
RLE3R4E., 0

R4E.¢

qﬁ'_is emitted by a, reflected by f, received by ~.
To estimate 3, match ¢ with the actual return x:
N o0
(x%a) = [ dr x(r)s(o),

where we assumed that ¥(7) is real, hence also 15(7)
and x(7). The right-hand side depends on the tra-
jectory (3 as a whole, hence it is a functional of 3. We

,,,,,,, 1-8

call it the ambiguity functional and denote it by
x(8). Explicitly,

%(6) = gagy [[ [ drar' ar" x(r) Glx(r) - B
x G(B(r") — a(r") ¥(r").
In practice, both ¥g(7) and x(7) have finite energy:

lsll? = / dr hp(r)? < o0

P [ drx? <o
—oQ
Then %(8) = (x,¥p) satisfies Schwarz’s inequality:

I(x %) < lix|l gl for all B, and
[(x e )| = lIxl sl <= x(7) = Cip(7)

for some constant C.

Thus to estimate the actual target trajectory Br,
vary the trial trajectory  to maximize the normal-
ized ambiguity functional

() = XO)

- 1-9

Then

| X ()] < lIxl
| X (8)|= lIxll <= x(7) = Cys().
We will show that xn(8) is a generalization of the

usual wideband and narrowband radar ambiguity
functions.

Even better: Define the error functional ‘
- 2
06 Yl _ | |%(8)]

EB) =1 e = e

Then Schwarz’s inequality reads

d < €(B) <1 for all 5, and
E(B) =0 <= x(7) = Cis(7).

To estimate the target trajectory, vary the
trial trajectory B to minimize £(3). For a
given (3, we may regard the value of £(3) as
an estimate of the error.

1-10




Warning: Even £(8) = 0 does not guarantee that
3 is the true target trajectory, only that the trial
return g is indistinguishable from the actual return
x. But clearly we cannot do any better than that!
For example, in monostatic radar with point sources,
all target trajectories with the same |r(t)| have the

same &(3).

It is impractical to try all possible trajectories 8. Any
prior knowledge or reasonable guess can be used to
restrict the class. For example, assume the target
moves with constant acceleration a:

1
r(7) =19 + voT + 3 ar?.

Then £(B) reduces to an ordinary function of the
target parameters:

5(ﬂ) - g(ro’ Vo, a):

which must be minimized to get the best parameters
in this class.

1-11

3. Monostatic Radar, Uniform Target Motion

To see the connection with ambiguity functions, as-
sume

& Monostatic Radar: The transmitter and receiver
are both at rest at the origin:

a(t) =v(t) = (0,1).
& Uniform, radial motion: The target motion is
(t) = r(t)n, where r(t)= [x(t)] =ro+vt.

Thus
B(t) = ((ro + vt)n,t)

is parameterized by two just scalars: The range ro >

0 and the range rate v. If v < 0, the target is closing
in, and if v > 0, it is receeding.

- 1-12

Theorem: Under the assumptions & and &, the
trial return is given by

bp(t) = A(t) Y(ot — 7), (4)
where
At) = _gA,_gg_(_l_j-_z%/_Q = attenuation factor
1672r(t)
o=""" = time scaling factor | (5)
ct+v
T = 2ro _ time shift .
c+v

Each quantity in (5) has a simple interpretation:

1. The attenuation factor A(t) implies that the in-
stantaneous power of ¥(t) is

-4

2
Pp(t)” (),
in agreement with the radar range equation.

1-13

2. The scale factor o represents the Doppler effect:

—c<v<0 = o>1and 9y is compressed.
0<v<ec = 0<o<1and is stretched.

3. The shift 7 > 0 represents the time delay due to
the finite propagation speed. )

Proof: Denote the wavelet received at 3(t) (before
re-emission) by 4/(t). Then

() = (ReEa®)(?)
— 9 / dt G(B(E) — alt')) $(¢')
=gp[ dt' G(r(t)n,t —t') P(t)

5(t—t —r(t)/c)

=gp/ dt’ (D) ¥(t)
_ute=r(v/e)
9s 4nr(t)y

,,,,,,, 1-14




The reflected wavelet received at 7( ) = (0,t) is Thus
therefore
| / o S(t—t —r(t')/c) =6 c+v(t’—T)> |
wan=g¢/ﬁcxwo—6u»wu> e o
(' =1T) :
- g.,/dt’ G(=r t')n ¢ t’)w'(t’) (6) c+v
Therefore (6) gives
7 4mr( t’) ' (®) c (D) "
But ¥s(t) = 95 c+v 4mr(T)
/ ) y g c YT -r(T) c)
t_t,_r(t)zc(t—t)—ro—-v 198 T, [ (T)]2
c c .
_ct—ro—(c+v)t But
- c . ct — 1o c
t — T)=
= ci—v [t,——cc+:)0] r(1) T0+U(c+v ) c+v (®),
:__C'*c'” (' —T), hence
T— r(T) r(t) ct—r9 To+uUt
where ot — 1o c c+v ¢4 c+v
= Tcto =(C—U)t— 20 =gt g
ct+v c+v
- 1-15 1-16 -
LECTURE 2

Putting all this together gives

_ g‘vgﬁ(l +v/c) o
walt) = PSS Yot

= A(t)yY(ct—7). QED

-7)

Under & and &, the ambiguity functional reduces to

/ dt A(t

Below we will see that this is essentially the wavelet
transform of x(t), also known as the wideband
amiguity function.

(ot = 1) x(t) = x(0, 7).

v 1-17

Reduction to Time-Scale Analysis

Recall that for monostatic radar (#) and uniform,

radial target motion (&), the trial return is

ws(t) = 980+

16'7r2r(t)2 -7) = A(t)Y(at — 7).

In practice, .
r(t) = 1(0) = o

during the reflection time interval. Hence

~ 99501 +v/0) _

and the trial return is

Ps(t) = Ao (ot — 7).

©1997 by Gerald Kaiser




To connect o with the Doppler effect, suppose the
outgoing signal is time-harmenic (CW):

Y(t) = 2", f>0.
Then the trial return is
Yg(t) = Ao e2rif(ot—7) Ao e=2mifT G2micft

The factor e~27i/T represents the time delay, and
e2m 19 ft is the reflected wave with the Doppler-scaled

frequency o f. As expected,

—c<v<0 =>0>1 = 0f>f
O0<v<ec=0<o0<l = o0f<f

Only in the narrowband approximation can f — o f
be replaced by a uniform frequency shift f — f+¢.

Returning to the general signal v (t), we have
2 2 [T 2 _ A3
sl = 43 [ dt (ot = = 22y

We may assume that the outgoing signal v(t) has
unit energy, i.e.,

= 2

Then the normalized ambiguity functional reduces to

~ — (wﬁaX)
X (8) = gl

=7 [ dlot-mx
= ("/)a,r’X)a

where

Vo r(t) = Vop(ot — 1)

is a scaled and translated version of 1(t) with unit
energy. Note that ||, .|| = ||| = 1.

2-3

The set of functions
{¢g+ : 0 >0and 7 = any real number }
is called the wavelet family generated by %, and ¢
is called the basic (or “mother”) wavelet.
The normalized ambiguity functional thus reduces to

an ordinary function of the target parameters (o, 7),

XN(ﬂ) - )2(03 T) = ("Z’a,r ,X>
-G / dt (ot — X (D),

which is called the wavelet transform of x(t) with
respect to the wavelet family {4, -}

Note that for radar, only ¢, » with

270 >0 and asc_v
c+v c+v

~1

are needed. This will also be understood in the con-
text of wavelet analysis. For now let 7 be any real
number and o > 0.
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Our assumptions & and & say nothing about the
outgoing signal ¥(¢). In particular. ¥(¢) can be an
ultra-short pulse or an ultra-wideband signal.

Thus in the radar literature, (o, 7) is known as the
wideband ambiguity function of the return x(t).

In fact, the parameter o has a meaning even when
1(t) is an ultra-short pulse, since the “backscattering
transformation”

P(t) = Yo, (t) = Vo (ot = 7)
occurs entirely in the time domain.

When (t) is narrowband, we will see that the
Doppler scale factor o can be replaced by a Doppler
frequency shift. For this reason we call {7.7) the
wideband target parameters.

The general method of ambiguity functionals and er-
ror functionals now takes the following reduced form.

The Schwarz inequality gives

| %00, 7) |=| (Dor s X) | < 1o LN = U],
|%(0,7)|= lIxll <= X(t) = Cuas ().
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To find the best wideband parameters, we must there-
fore maximize |x(o,7)|.

Under & and &, our physical wavelet analysis of the
return by its ambiguity functional reduces to ordi-
nary (“mathematical”) wavelet analysis by the time-
scale wavelet transform!

Altenatively, we can define the wideband error
function

[($or DO _ ;Ko )P

Elo,1)=1- =
) = e P TP P
Then the objective is to minimize £(o, 7), since
0<€&(o,7) <1

E(o,7) =0 <= x(t) = CYo.r(t).
Furthermore, the value £(o,7) gives an estimate of
the error in the trial return v, - (t).

Once the wideband parameters (o, ) are estimated,
the range and range rate are given by

cT 1-0
ro = and v = c.
1+0 (1-}—0)
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To understand the connection between time-scale
analysis and time-frequency analysis, look at the
wavelet transform in the frequency domain.

We use the Fourier transform notation

w= [ Tt et ()

— 00

X0 = [ T df emit(y).

—00

Then

B () = / it e Ja (ot — 1)
1
NG

Parseval’s identity states that the inner product in
the time domain equals the inner product in the fre-
quency domain, hence (since ¥, -(f) is complex)

X(GvT) = (wo.TsX) = ('&a,ry)&)

- /_ 0f Dor () RS-

(1)

eI G f /o).
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Inserting (1) gives the frequency domain version
of the wavelet transform:

>Z(0',.T)=% / if TR/ Jp). | ©

We require 1 to satisfy the oscillation condition

- A
| / dt ¥(t) =0, ie., %(0)=0. (O)

That is, (t) has no “DC component”.

This is physically reasonable: Since the DC compo-
nent is constant (static), it cannot propagate and may
as well be removed. In wavelet analysis, a require-
ment closely related to (O) is called the admissibil-
ity condition.

If 9(t) is integrable, then 9)(f) is continuous and

B(f) =0 as f—0.

Since 9(t) has finite energy, we also have

P(f) =0 as |f] — co.

Suppose, in fact, that ;Z(f) is a bandpass filter, i.e.,

-~

¥(f) = 0 outside the double band f; < |f| < fa

for some given frequencies 0 < f; < fp. Then

Jﬁ B(f/o) ~ 0 outside of ofy < |fl <ofs.

That is, 0~1/2¢(f /o) is a scaled bandpass filter.
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We can thus interpret O as follows:

1. Localize the spectrum x(f) using the scaled filter:

() — —1\/-—(;1/3(f/0)* W(F) = %o(f):

2. Take the inverse Fourier transform to get X(o,T):

>‘<a(f)_’/_co df U7 %(f) = X(o, 7).

The wavelet transform ¥ can be inter-
preted as a scale-windowed inverse
Fourier transform (SWIFT) of x.

In the narrowband approximation, this view will con-
nect the time-scale analysis smoothly with the usual
time-frequency analysis, where the window slides in-
stead of being scaled; see also [3].
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But what can wavelet analysis contribute to radar? \
The wavelet inversion formula, for one.

e Given only x(o,7), find x(t).

This can serve to model a dense target environment.

To find x(t) from X(o,7), note that © says l
Ko, =77 { 22 s/0y 20} (/o).

Taking the inverse Fourier transform with respect to
T/0o gives

Vadslar ) = [ " dr eI o, 7).

Multiply both sides by o —1/24) ( f/o) and write

Sy(f) = [b(f)I?
for the spectral energy density of 1. Then

sos/%) = | " dr 2 I [)3(0,7)

":/_ dr 'ﬁbar(f))z(o' 7).
— _ 2-11 -

Now integrate over o with an arbitrary weight func-
tion w(o)/o:

[ Z w@sutirn i
0

* do © . i
=/0 a /_ _dr dor(H (7).
Define
win= [ a{f w(@)Su(fle) (@

the frequency filter corresponding to w(c). Then

p=[[ Farw (@) (P X017
>0 0

(3)
The inverse Fourier transform of the left side is

the convolution operator W (“stationary system”)
with transfer function W(f). That is, let

w(t) z/_oo df " W(f).

e 2-12

Then w(t) is the impulse response of W and

/ du w(t — u) x(u)

- / df ETIW(F) (-

Wx(t) = w* x(t

Taking the inverse Fourier transform of (3) gives

W x(t) = / T i TR

//M;dmu oVl 7).

The meaning of { is as follows:
We interpret w(t) as the impulse response of a filter.

Then ¢ shows that the filtering can be done in the
scale domain instead of the frequency domain, with

-~ 2-13
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the correspondence

frequency filter = W(f) « w(o) = scale filter

Fourier basis = 2™t « 1), .(t) = wavelet basis
FT=x(f) < X(o,7) = WT

$ gives the reconstruction of x(t) from x(o,7) as a
special case: Choosing w(c) = 1 gives (for f # 0)

win = [ L surio)= [ F 5w
- [ % wor=c.,
0

a constant. Hence w x x(t) = Cyx(t), and  gives

=5 // —dwar()(ar) (R)
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This is the reconstruction formula for the WT.

A necessary condition is

Co= | m%’f D)2 < oo, (A

called the admissibility condition for .

Note that A = 4)(0) = 0, the oscillation condition!

O must be satisfied to make reconstruction
possible, and (t) must therefore “wiggle.”
This is why ¥(t) is called a “wavelet.”

In (R), all delays 7 € R and all scales ¢ > 0 are
used. But on physical grounds, we expect only 7 > 0
and ¢ =~ 1 to be relevant, since |v| < c in radar.
This is reflected in (R) by the fact that for negative
7 or large |logo|, the coefficient function x{(co,7) is
negligeably small since ¥, .(t) is a poor match for
the actual return x(t).

In fact, we can restrict the integral in (R) to the
values (o, 7) expected to be most likely, simplifying

asav/er 2""1 5

the computation. Any other a priori knowledge
about the target motion can be used similarly
to “compress” (R).

But note that in sonar, the relative velocity of the
target need not be negligeable compared to the prop-
agation speed of the acoustic waves. (Consider a
torpedo and a ship closing in at maximum speeds.)
Then the reconstruction formula (R) still works, with
the proviso that larger scale factors become relevant.
By contrast, the narrowband ambiguity function (dis-
cussed in Section 2 of this lecture) fails to take such
situations into account.

Applications of (R) and ¢:

1. Dense Target Environment: A single tar-
get with wideband parameters (o, 7) gives a return

o.r(2).
Therefore we model a dense distribution of targets

(e.g., clouds or dust in wind) by a “target density
function” D(o,7), with return

)= [[ % drvert) Do)
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The objective is to solve for D(o,7) in terms of x.
(R) suggests that

D(o,7) = Cy'%(o,7),

but this is not quite right. A deeper analysis shows
that D(o,7) cannot be found using a single wavelet
¥. Instead, a whole class of different basic wavelets
(each with their family) must be used to estimate
D(o,T). See [3, 5] and references therein.

2. Doppler Scale Processing: We can process
the WT of the return, ¥(o,7), by choosing a weight
function w(o) and using ¢. This might be done to
remove noise or to concentrate on a partlcular range
of scales, refining the constraint o = 1.

Since ¢ is directly related to velocity, such scale fil-
tering can be used for moving target ID and clut-
ter rejection. In the wideband case, this should
work better than Doppler frequency filtering, since
the Doppler frequency is frequency-dependent!




LECTURE 3
Reduction to Time-Frequency Analysis
Sampling in Time-Scale versus Time-Frequency

1. The Narrowband Approximation

Under what conditions can Doppler scaling be re-
placed by a Doppler frequency shift? Again let ¢ be
a bandpass filter: .

J}(f)zO unless 0 < f1 <|f| < fa

for some 0 < fi < fa < co. Then positive and nega-
tive frequencies move in opposite directions. For ex-
ample, suppose that o > 1 (target closing in). Then

f>0 = of>f
f<0 = of <f.

Thus, in order to approximate scaling by shifts, we
must eliminate the negative frequencies in ¥(f):

() = dt ()= B EF>0
i —drn={H 1120
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The resulting time signal
0 . -~
v = [ d i

is complex. It is called the (Gabor) analytic signal
of 1) because it extends analytically to the upper-half
time plane. (See [3], Section 9.3 for a generalization
to many variables, like space-time.)

All the frequency components in 1/3“‘( f) move in the
same direction under scaling (to the right if o > 1, to
the left if 0 < o < 1.) But their motion still does not
look like a uniform shift, unless the endpoints move
by approximately the same amounts. To ensure this,
we must assume that P+ (f) satisfies the followmg
condition:

The frequency-band (fi, f2| is narrow, in the sense
that

fa—fi
fat+ fi <l W)
. 3-2 -

Then we can define the carrier frequency and the
bandwidth of 9 as

_fot h _fo—f
fcz——E— and b:——2—<<fc

¥+ (t) can now be regarded as a slowly varying “mes-
sage” imprinted on a rapidly oscillating carrier wave.
In practice, 9*(t) oscillates much too rapidly (at RF)
to be sampled, hence the carrier is removed by de-
modulation: ’

W(t) = e~2mifet gt (1),

This is the complex envelope or the video signal of
Y.

Its real and imaginary parts are called the in-phase
and quadrature components:

I(t) = Re¥(t) = in-phase componént
Q(t) =Im¥(t) = quadrature component .

A given frequency f in [f1, f2] is shifted by

f"’——f:

Afzof-f=(o-1f=-—

,,,,, - 3-3

since |v] < c. If the narrowband assumption (N)
holds, we can substitute f. for f on the right to obtain

2v 2
Afx——fo=——,
f cf Ac

where A\, = ¢/ f. is the carrier wavelength.

The point is that now the frequency shift

=-3 (1

is independent of f.

In the narrowband approximation, all frequency
components'in ¥*(f) undego a uniform Doppler
shift ¢ given by (1).

The wideband parameters (o, 7) are thus replaced by
the narrowband parameters (¢, 7). These are re-
lated to the target parameters (rp,v) by




where we have used |v| < ¢ in the second equation.
The new objective is to estimate ¢ and 7, from which
we obtain the range and range rate by

cT A
ro=— and v=-— .
2 2

It can be shown [2] that in the narrowband approx-
imation, the wavelets based on the analytic signal
¥*(t) become

Y3 () = 27Ty (1),

where
Uy r(t) = e 2mifer S2midt U(t—T) (2)

is the video signal of ¢, ,. It is a translated and
modulated version of ¥(t). The scaling has now been
replaced by a modulation.

Equation (2) states that ¥4 () is a phasor rotating
at the Doppler frequency ¢. This explains why the
complex video signals must be used. If only the in-
phase or the quadrature components were used, then

3-5

the phasor would be replaced by a harmonic oscillator
moving in a line, like €27 — cos(27¢t). Although
this is enough to determine |¢| and hence |v], it does
not determine the sign of v, hence the direction of the
target motion (towards or away from the radar site).
Clearly this is a very valuable piece of information!

Something similar to the mathematical transforma-
tions

Y(t) = YH () = U(t) = et yr (1)

must actually be performed at the hardware level in
order to “slow down” the signals so they can be sam-
pled and processed. See Stimson [7] for a detailed
explanation with wonderful illustrations.

The video signal of the measured return x(t) is
X(t) = e 1),

where x*(t) is the analytic signal of x(t).

Claim: In the narrowband approximation, the wide-
band ambiguity function becomes the windowed
Fourier transform of X(t) with respect to ¥(t) as
the basic window.

Recall that the wideband ambiguity function, ex-
pressed in the frequency domain, is

2(077)E<wa,T,X>=(¢a’,Ta>A€>
1 * rifr/o ] *
== [ @ eI ()

=X"(0,7) +Xx7(o,7),

where

7 (0,7) = —}; /0 T df TG o) 1S
1 0 . .
vl = / df 27717 §(f o) JS)
— e /0 T df eI (= f o) =1)

- /O T df eI (f 10 R(f)"

=x*(o,7)".

Thus
x(o,7) = 2Re x* (o, 7).
But x*(o,7) may be expressed directly in terms of
the analytic signals 97 ; and x* by
% (o7) = (P2, %)
=(Ygrx") = (Yor. X))

where the last relation holds in the narrowband ap-
proximation. Note that the carrier phasor e*7et
which is contained in both ¢} .(t) and \ ~(¢). is auto-
matically demodulated by matching the two analytic
signals.

The narrowband ambiguity function is defined
by matching the video signal X (t) of the return with
the video signal ¥, - (t) of the trial return:

X(¢,7) = (Yor, X)
= emifeT / dt e 2Tyt — )" X(2).

- O

This is seen to be the windowed Fourier trans-
form of X (t), using ¥(t) as a basic window.
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Thus we have shown that in the narrowband approx-
imation, the ambiguity functions are related by

x(o,7) — 2Re X(¢,T).

Since the wideband ambiguity function is a prototype
of time-scale (wavelet) analysis, we conclude:

Time-frequency analysis may be regarded as the
narrowband limit of time-scale analysis, where the
basic window is the video signal of the basic wavelet.

7) is used to determine (¢, 7) in the same way

X(4,
as x(o,7) is used to determine (o, 7). Note first that

s l12 = 112]? = Jw*]* = ||¢||2 =3
Hence Schwarz’s inequality implies
- 1
X, D] < ¥l I X =—52 IX
| X (6, ) < 1ol Xl 7 X1l
- 1 ,
| X (¢, 7l ﬁ!l [ (1) 6.r(t)

) 3-9

The narrowband parameters can therefore be esti-
mated by maximizing |X(¢,7)|. Alternatively, we
can minimize the narrowband error function

_ . | X(e )
Elp, 1) =1 - ——
N T

since the Schwarz inequality states that

0<&(¢,7)<1 and

E(p,7) =0 < X(t) = CUy . (t).
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Summary of Ambiguity Functional Methods

The ambiguity functional x(8) and error functional
£(B) can be used to estimate an arbitrary point-
target trajectory, with both the transmitting and re-
ceiving platforms in arbitrary and independent mo-
tions. When the radar is monostatic and the target
motion is uniform in the line of sight, then ¥(8) and
£(B) reduce to the corresponding wideband functions
%(o,7) and £(o,7), which can be used to estimate
the wideband target parameters (o,7). If, more-
over, the outgoing signal 1(¢) is narrowband and the
target speed |v| < ¢, then the wideband functions
further reduce to the narrowband functions X (¢, 7)
and £(¢,7), which can be used to estimate the nar-
rowband parameters (¢,7). In this sense, physical
wavelet analysis is a generalization of ordinary (time-
scale) wavelet analysis, and the latter is a generaliza-
tion of time-frequency analysis. Radar provides the
glue!

- 3-11

2. Time-Scale vs Time-Frequency Sampling

Actual computations are numerical, hence use sam-
pling. The wavelet transform naturally divides the
frequency domain logarithmcally into proportional-
width frequency bands, as in music, so that each
band is sampled at a rate proportional to its mean
frequency. In the narrowband approximation, the
widths of all the frequency bands become equal.
Hence in time-frequency analysis, all bands are sam-
pled at the same rate. This multirate feature makes
wavelet analysis much more efficient than time-
frequency analysis. To show this, recall that for real

¥(t) and x(t),
= \/5/_0o dt P(at — 7)x(t)
N _\}7? /: df 217 P(f/o)" %(f)
=\/5/ df e P(f)* (o f)
— 9Re / df 2 47 G(f) k(o f)-
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Suppose, for simplicity, that ¥ is a bandpass filter
with :

D(f) =0 unless 1 < |f| <2.
Since (t) and x(t) are real, it suffices to consider
only positive frequencies, i.e., look at x*(o,7). The
above shows that x*(o,7) depends on x(f) mainly

in the band
o< f < 2.

Therefore, to cover the entire spectrum, we sample
x*(o,7) at the scales

om=2" meZ=/{0,+1,42,43,--}.

That is,

%t (2™, 7) covers the band By, :2™ < f < 2™FL

As m varies through the integers, all frequencies ex-
cept DC (f = 0) are covered. Since the DC compo-
nent does not propagate, this is OK.

. 3-13

Since the width of B,, is

2m+1 —_9gm _ gm

?

we sample ¥*(2™,7) in 7 at the Nyquist rate 2™.

To recover all but the DC component of x(t) from
the wavelet transform x(o,7), sample x*(o,7)
at the discrete scale-time points o,, = 2™ and
tm,n = n/2™, for all integers m,n.

Note that the above sampling is minimal, and may in

fact be too sparce for some wavelets. See [3], Chapter
6.

I"_c does apply when 9 generates a wavelet basis de-
fined by

U n(t) = 2™ 2427t — n) = 2™/ 29(2™ (¢ — n/2™)).
This includes all the compactly supported orthonor-
mal wavelet bases discovered by Daubeshies [8] and

their biorthogonal variants, as described in [9].
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Just as a look at the continuous wavelet transform
indicated how sampling must be done in the time-
scale plane, so will a look at its narrowband limit, the
windowed Fourier transform, reveal how to sample in
the time-frequency plane. '

Recall that the narrowband ambiguity function is

R(6.7) = (Vor, X) = Ty, X)
= it [ g I R (4 6).

For simplicity, assume that the video signal ¥ is con-
centrated on the band |f]| < 1/2, i.e.,

- 1
Y(f)~0 unless |f|< 3

Then the above shows that X (¢, 7) depends on X (f)
mainly in the frequency band

1 1
¢_§ §f§¢+§~

Thus, to cover the entire spectrum, we sample
X (¢, 1) at the Doppler frequencies

¢pm =m, mEeEZL.
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That is,

X(¢,7)covers the band B, :m — = < f <m +

DN =
o=

As m runs through the integers, the entire spec-
trum X(f) is covered. Since By, has unit width, the
Nyquist rate for sampling X (m, 1) is also unity.

To recover X(t) from its windowed Fourier
transform X(cﬁ, T), sample 'f((q&, 7) at the dis-
crete time-frequency points ¢, = m,m, = n,
for all integers m,n.

As in the case of time-scale analysis, this sampling
is minimal and may actually be too sparce for some
windows ¥(t). See [3], Chapter 5.

Note: The width of the scaled band B,, was 2™, while
the width of the modulated band Bj, is constant.
This is what makes wavelet analysis so much more
efficient because it allows high-frequency bands to be
sampled at a proportionatey high rate.
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Macroscopic Interpretations of (o,7) and (¢, 7)
Let v(t) and ¥(¢) be concentrated on [T, T].

Let ¥*(f) be concentrated on [f. — b, fc + b]

Let U(f) be concentrated on [—b,b].

In time-scale analysis, o represents the passband of
Uo+(f) and 7 represents the pass-time of ¥, r(t).
That is, they represent the intervals

o+ [o(f. — b),0(fc +b)]
7 [(1=T)/o, (7 +T)/o].

Similarly, in time-frequency analysis, ¢ represents
the passband of Wy -(f) and 7 represents the pass-
time of ¥y ,(t). That is,

T(———»[T—T,T-I-T].

Thus, both sets (o,7) and (¢,7) are actually
macrosopic frequency and time parameters.
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LECTURE 4

Directivity: Radar with Pulsed-Beam Wavelets

1. Complex-Source Pulsed Beams

Given a small source centered at x € R2, responding
to an impulse at time ¢. Let the response at x’ at
time t’ be

K, t'|x,t) = K(z'| z),

a solution of the wave equation in z’ with a spatial
source distribution representing the source at time t.

If the source is a point at x, then
KX, t'|x,t) =G -x,t' —t) = Gz’ —z),

where G is the retarded Green function for the wave
equation: .
Gty = - IXl/e)

47 |x|

A simple model can be given for extended sources
as follows:

©1997 by Gerald Kaiser

1. Find an analytic extension K(z'|z) of K(z'|x)
complex space-time source-locations:

z = (z,u) € C,
where

z=x+iye€C® and u=t+iseC.

2. Interpret K(z'|z) as a function of the real space-
time observation point z’ = (x',#') € R%.

Heyman and Felsen [10] showed that when the
appropriate extension K(z'|z) is chosen, it
can be interpreted as a circular disk of radius
ly|, centered at x and radiating a pulsed beam
in the direction of y at time t.

We will see that the imaginary space-time vector
(y,s) must satisfy |y] < cs in order for the exten-
sion to be defined, and |y| < cs in order for it to
be analytic. Heyman and Felsen usually choose the
minimum value of s, i.e., s = |y|/c. We will choose

- 4 4-2

s > |yl/ec, so that K(z'|z) is analytic. Since the
value of s is related to the duration 7 of the pulse by
T = §—|y|/¢c, leaving s free means that all eight of the
real variables x,y,t,s have a physical interpretation
in terms of the source.

In [11] and [3], complementary extensions K(2'|z)
were derived and interpreted: The location x of the
source remained real, while the observation point be-
came complex, i.e., ' — 2/ =1’ +1iy'.

It was shown that the eight real variables z’, 3y’ € R*
can be interpreted as phase-space coordinates, some-
thing like an eight-dimensional time-frequency-space-
wavenumber analysis of the waves. (See Chapter 4 of
[11], and Chapters 9-11 of [3].)

The pulsed beams will be used to generalize the am-
biguity functional formalism introduced in Lecture 1,
which applied only for point sources and targets, to
disks: The transmitting and receiving antennas will
be dishes, and the target will be a circular disk. More
complicated targets can then be composed from such
disks.
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To derive the pulsed beams, recall K(z'|z) = G(z' -
x), where '

8(t — |x|/c)
G(z) = t) = —————= .
We will continue G(z) to G(z + iy) by extending the
numerator and the denominator separately.

1. Extension of |x|:

x| = vVx-x = Vx?
—Vz2 = /X2 —y?+2x-y.

A branch of the complex square root must be chosen.

2. Extension of §(t — |x|/c): First extend 6(¢) to

6(t +1is), then replace
§(t - |x|/c) — 6(t +1is — Vz - z/c).
The extension of §(t) is defined by

oo o
5(t) = / df €™t — §(t+is) = / s

o 0
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which is the analytic signal of 6(t). For the integral
to converge, we need s > 0. Then
- i 1
6(t+1is) = —
( ) 2m t 418

, §>0.

Note that the boundary values of & are related to 6
by

lim+ [2Re 6(t + is)] = 6(t).

s—0

Thus

&(2) = Glz,u) = 20 +(47T ;z_\z/)?/@

i

B 87m2(t +is — Va?/c)Va?

For 6(t +is — V2%/c) to be defined, we need
Im (t—l—is— \/_z—z_/c> >0, = ImVz2 < cs.
It can be shown that holds for all x if and only if

ly| < es.
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An analytic extension of G(z) is given by

= ?

G(z) = G(x+iy,t+is) = 8n2(t 15— Vo ) VaR

with |y| < cs.

This means that the real four-dimensional vector
y=(y,s)=Imz
belongs to the future cone
V! ={(y,s) €R*: ly| <cs}.
Thus é(x +1y) is analytic in the complex space-time
domain
T.={z+iyec C*:yeV]},
called the future tube [3, 11].

For the above to make sense, we must choose a branch
of Vz2. In fact, the “branch points” are given by

22 =x?-y?42ix-y=0,

or
x*=y? and x.-y=0.

For fixed y # 0, the first equation states that x be-
longs to the sphere of radius |y| centered at the ori-
gin, and the second equation further restricts x to
the great circle in the plane orthogonal to y.

Given y # 0 and s > |y|/c, the extended Green
function G(z) is therefore singular on the branch
circle '

Cyé{x€R3:|x|=|yl and x-y =0}

Now fix xo on Cy. Given any branch of \/z—z, follow
this branch while moving around the circle of radius
R < |y| centered at xo and lying in the plane through
the origin orthogonal to the plane of Cy. (The second
circle is like a chain link around Cy!) Upon traversing
this link, we find that vz2 has changed sign, hence
we have moved to the other branch!
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Thus, to define G(z) uniquely, we must introduce a
branch sheet Sy (i.e., a two-dimensional analog of a
branch cut), whose boundary is the branch circle:

8Sy = Cy.

G(z) is discontinuous across Sy. Different choices for
Sy give different physical solutions [10]. Since we are
interested in compact sources, we choose for Sy the
disk

Sy ={xeR®: |x|<|y] and x-y=0}
which will be called the source disk. The reason for
this name is as follows.

We define the response at the real space-time obser-
vation point ' € R* to an “impulse” disturbance at
the complex space-time point z = z + iy € 7, by

K(z'|2) =Gz - 2*) = G(z' —z +1iy). (1)

Note that the right-hand side is well-defined since
z € T, implies that 2’ — 2* € 7, .
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K(xz'|z) solves the homogeneous wave equation at -
all 2’ = (x/, ') € R* except when x' — x € Sy, since
K is discontinuous there. Recall that the EM ver-
sion of K(z' | z) is interpreted as a (Coulomb) poten-
tial, hence the EM fields are given by its derivatives
with respect to z’. A discontinuity across Sy there-
fore gives a delta-function singularity on Sy, which is
interpreted as a source distribution concentrated on

Sy.

The two sides of S, are not equivalent: The pulsed
beam is radiated in the direction of y and not —y.
Thus we can interpret K(z'|z) as the output of a
dish antenna centered at x with orientation given by
y, emitting a pulse of duration (roughly) given by s
at time t. The vector y therefore acts as a convenient
“handle” by which the orientation of the antenna is
controlled.

2. Pulsed-Beam Ambiguity Functionals

We now use pulsed beams to generalize the ambiguity
functional formalism from point sources and point
targets to disk antennas and disk targets.

Suppose that the'transmitting antenna executes an
arbitrary motion, including rotations and accelera-
tions. This is parameterized by

z = aft) = z(t) +iy(t), where
z(t) = (x(t),t) € R* and y(¢t) = (y(t),s) € V.
Assume |y(t)| = constant < cs, but the direction of

y(t) may vary to allow rotations, tracking, scanning,
etc.

While executing this motion, the antenna is fed an
input time signal 1(¢). Then the output beam is

Vo) = [ de K@ a(®) vee)

—00

We call ¥,(z') the extended physical wavelet
generated by 1(t) along af(t).

N~ 4-10

Given aft), define the emission operator E, by

(&wwml_ammamuu

As before, E, takes a function of one variable (the in-
put signal) to a function of four variables (the output
beam).

If the disk antenna is used as a receiver. it converts
space-time waves into time signals. This defines a
reception operator R,. The simplest model for
the received signal due to an incident wave F(z') is,
again,

(RaF)(t) = ga F(a(t)).

where g is a gain factor. R, measures the field
along the complex trajectory &(t). Again. more com-
plicated receivers can be formulated which measure
derivatives of F along a(t). (In EM. R,, could mea-
sure the induced current rather than the field.)
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Since «af(t) is complex, the value of F'(z') at 2’ = a(t)
must be defined. We use the analytic-signal trans-
form (AST), which extends F' to complex space-time
(3,11]:

F(x+zy)——1—/

2m1

dT, F(z +1y).
T—1

This is a space-time generalization of Gabor’s ana-
lytic signals, reducing to the latter in one dimension
(time signals).

If F(z') is a solution of the homogeneous wave equa-

tion, then F(z + iy) is analytic in the future tube T,

(3,11] .

We model reflection from a disk as reception (by
the disk, acting as a receiver) followed by re-emission:

Freﬁ(xl) = (EaRaF)(‘;E,)
= G / dt K(2'| a(t)) F(a(t)).
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Here g, is re-interpreted as a reflection coefficient.

More complicated targets can be patched together
from circular targets of various radii and orientations.
The reflection coefficient then becomes a function de-
fined over the target surface.

We now restate our elementary radar problem as fol-
lows:

A disk transmitter emits 1 (t) while following «(t).

The wave is reflected from a disk target following

B (2).

The reflected wave is received by a disk receiver fol-
lowing ~y(t), giving a return x(t).

All three trajectories af(t),B(t),v(t) are complex,
hence they incl_ude arbitrary scanning, tracking, and
rotation as well as accelerations.

Problem: Given the transmitted and received
signals ¢, x and the motions a,~ of the transmit-

ter and receiver, estimate the target motion fr.
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If we knew (3, we could compute x from
X = RyEp. R, Ex7.

Thus, to estimate B, we choose a trial motion B(t)
and compute the trial return, Wthh we again denote

by ¥g:

Yp(t) = (RyEgRgEat)(?)

= 0208 / dt’ dt" K(+(2) | B(E)) K(B(E) |a(t”)) w(t")

To estimate 3,(t), we match g with the actual re-
turn x(t) by taking the inner product of the two sig-
nals.

Again we denote the result by x(8) and call it the
ambiguity functional of x (note that now g(t) is

complex):
%(8) = (¥s. X /dtwa x(t).

The Schwarz inequality implies

IX(8) | = vs. 2| < ll¥sl lIxll, and
IX(B)] = Hlvsll lIxll <= x(t) = Cebs(t).

Define the normalized ambiguity functional

w)= T

Then
Ix~(B) | < |lx|| for all trial motions 3, and
X~ (B)] = lIxll == x(t) = C¢s(t).

Thus, to estimate (B.(t), we must maximize X (0).

Equivalently, we can minimize the error functional
defined by

Ix(8)?
lsll? ixl?’

since the Schwarz inequality states that

EB)=1~-

0<EB) <1 and £(B) =0 <= x(t) = Cys(t).
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¥~ (3)| and £(B) attain their maximum and mini-
mum values, respectively, only when the trial return
is indistinguishable from the actual return.

Again, x(t) = Ctp(t) does not guarantee B(t) =
Br(t), since the return does not uniquely determine
the target motion.

Reason: The functionals x »(b) and £(3) are not one-
to-one, i'e'y XN (ﬁl) = 5&N(ﬂ2) does not lmply ﬁl(t) =
Ba(1).

Thus the radar problem is inherently ambiguous.
The best we can do is find all 8 with [x~(8)| = |Ix]|-
This can be called the ambiguity class of x(t).

Waveform design problem: Find 1 so as to minimize
the ambiguity classes.
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3. Multiple Targets and Multiple Reflections
We have assumed that there is only one target. ‘

With N targets, we can approximate the return as

V81, BBy X WB o T Upy
But this ignores multiple reflections.

These can cause resonances (ringing) and must some-
times be taken into account.

For example, the signal received by the doubly-
reflecting path a — B,, — B, — v is

R‘/Eﬁn Rﬁn EBm Rﬁm an 9
which is a triple integral

Summing over such returns with £ = 0,1,2,--- re-
flections (where k = 0 is no reflection, applicable to
bistatic radar) gives the complete N-target trial re-

turn ¥g, 8,.....8~ -

To estimate (;,0s,...,08n, define the N-target am-
biguity functional by matching g, s,.....8y With x:

X(B1, B2, BN) = (¥p, Bay..Bn » X )-

327707 4_1 7

i

The Schwarz inequality may be used again to opti-
mize the match, just as with a single target.

This method is reminiscent of Feynman diagrams
[12], where fundamental processes are represented by
multiple integrals with corresponding intuitive dia-
grams. Because the physics is built into the formal-
ism from the beginning through the Green functions,
our model can handle such complications in a concep-
tually straightforward (if computationally nontrivial)
way. The resemblance to Feynman diagrams is no
coincidence, and the present formalism may be mod-
ified to include quantum (photonic) aspects of radar
simply by using Feynman propagators in place of
the retarded Green functions. '
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